Wednesday, August 17, 2011

A scenario that disrupts communication between nerve cells
(in Alzheimer's disease)
Please Help Support Alzheimer's Research Today! 
Your Alzheimer's donation will help billions live without it.

Alzheimer's disease is characterized by abnormal proteins that stick together in little globs, disrupting cognitive function (thinking, learning, and memory). These sticky proteins are mostly made up of beta-amyloid peptide. A better understanding of these proteins, how they form, and how they affect brain function will no doubt improve the diagnosis and treatment of Alzheimer's disease. To this end, a research team led by Stuart A. Lipton, M.D., Ph.D. at Sanford-Burnham Medical Research Institute (Sanford-Burnham) found that beta-amyloid-induced destruction of synapses—the connections that mediate communication between nerve cells—is driven by a chemical modification to an enzyme called Cdk5. The team found that this altered form of Cdk5 (SNO-Cdk5) was prevalent in human Alzheimer's disease brains, but not in normal brains. These results, published online the week of August 15 in the Proceedings of the National Academy of Sciences of the USA, suggest that SNO-Cdk5 could be targeted for the development of new Alzheimer's disease therapies.
Cdk5 is an enzyme known to play a role in normal neuronal survival and migration. In this study, Dr. Lipton and colleagues found that beta-amyloid peptides, the hallmark of Alzheimer's disease, trigger Cdk5 modification by a chemical process called S-nitrosylation. In this reaction, nitric oxide (NO) is attached to the enzyme, producing SNO-Cdk5 and disrupting its normal activity. Continue to readeurekalert.org

Being fat is healthier than constantly trying to diet

Being overweight may be better for you than constantly trying to stay slim through dieting, according to a new study. Read moredailymail.co.uk
Get Energy Active!

Posted YVN (AMYLOID @ PHOTO)

No comments:

Post a Comment