Please Help Support Alzheimer's Research Today!
Your Alzheimer's donation will help billions live without it.
The researchers report that they have designed molecular inhibitors that target specific proteins associated with Alzheimer's disease and HIV to prevent them from forming amyloid fibers, the elongated chains of interlocking proteins that play a key role in more than two dozen degenerative and often fatal diseases.
"By studying the structures of two key proteins that form amyloids, we were able to identify the small chain of amino acids responsible for amyloid fiber formation and engineer a 'molecular cap' that attaches to the end of the fibers to inhibit their growth," said research leader David Eisenberg, director of the UCLA–Department of Energy Institute of Genomics and Proteomics and a Howard Hughes Medical Institute investigator.
The study was published online June 15 in the journal Nature and will be available in an upcoming print edition.
"This research is an important first step toward the development of structure-based drugs designed against amyloid diseases," said Eisenberg, who is a UCLA professor of chemistry, biochemistry and biological chemistry and a member of the California NanoSystems Institute at UCLA. "Our results have opened up an avenue so that universities and industry can start creating therapeutics that could not have been produced 10 years ago."
Continue to read: physorg.com & medilexicon.com